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Recap 

§  Programmable vertex und fragment processors 

§  Expose that which was already there anyway 

§  Texture memory = now general storage for any data 
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A More Abstract Overview of the Programmable Pipeline 
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More Versatile Texturing by Shader Programming 

§  Declare texture in the shader (vertex or fragment): 

§  Load und bind texture in OpenGL-program as always: 

§  Establish a connection between the two: 

§  Access in fragment shader: 

uniform sampler2D myTex; 

glBindTexture( GL_TEXTURE_2D, myTexture ); 

glTexImage2D(...);"

uint mytex = glGetUniformLocation( prog, "myTex" ); 

glUniform1i( mytex, 0 );  // 0 = texture unit, not ID 

vec4 c = texture2D( myTex, gl_TexCoord[0].xy );"
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Example: A Simple "Gloss" Texture 

§  Idea: expand the conventional Phong lighting by introducing a 
specular reflection coefficient that is mapped from a texture on the 
surface 

demos/shader/vorlesung_demos/gloss.{frag,vert} 
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Procedural Textures Using Shader Programming 

§  Goal:  
Brick texture 

§  Simplification &  
parameters: 

BrickStepSize.y 

BrickStepSize.x 

BrickPercent.y 

BrickPercent.x 

MortarColor BrickColor 
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§  General mechanics: 

§  Vertex shader: normal lighting calculation 

§  Fragment shader: 

-  For each fragment, determine if the point lies in the brick or in the mortar on the 
basis of the x/y coordinates of the corresponding point in the object’s space  

-  After that, multiply the corresponding color with intensity from lighting model 

§  First 3 steps towards a complete shader program: 

vorlesung_demos/brick.vert and  brick[1-3].frag 
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Noise 

§  Most procedural textures look too "clean" 

§  Idea: add all sorts of noise 

§  Dirt, grime, random irregularities, etc., for a more realistic appearance 

§  Ideal qualities of a noise function:  

§  At least C2-continuous 

§  It’s sufficient if it looks random 

§  No obvious patterns or repetitions 

§  Repeatable (same output with the same input) 

§  Convenient domain, e.g. [-1,1] 

§  Can be defined for 1-4 dimensions 

§  Isotropic (invariant under rotation) 
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§  Simple idea, demonstrated by a 1-dimensional example: 

1. Choose random y-values from [-1,1] at the integer points: 

2.  Interpolate in between, e.g. cubically (linearly isn’t sufficient): 

§  This kind of noise function is called "value noise" 
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3.  Generate multiple noise functions with different frequencies: 

 

4.  Add all of these together 

-  Produces noise at different "scales" 
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§  The same thing in 2D: 

§  Easily allows itself to be generalized 
into higher dimensions 

§  Also called Perlin noise, pink noise, or 
fractal noise 

§  Ken Perlin first dealt with this during his 
work on TRON 

Result 


