
Advanced Computer Graphics
Advanced Shader Programming

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Advanced Shader Techniques Advanced Computer Graphics 10 May 2013 SS

Recap

§  Programmable vertex und fragment processors

§  Expose that which was already there anyway

§  Texture memory = now general storage for any data

Vertex
Processing

Cull, Clip
& Project Assemble

And
Rasterize
Primitive

Fragment
Processing

Per-
Fragment

Operations

Frame
Buffer

Operations

Texture
Memory

Frame
Buffer

Read Back
Control

H
os

t
C

om
m

an
ds

D
isplay

glBegin(GL_…)

glEnable, glLight, …

Pixel
Pack &
Unpack

g
l
V
e
r
t
e
x

glTexImage

Status
Memory

G. Zachmann 3 Advanced Shader Techniques Advanced Computer Graphics 10 May 2013 SS

A More Abstract Overview of the Programmable Pipeline

Vertex
Shader

Primitive
Assembly

Fragment
Shader

Rasterization

Fragment/Framebuffer
Tests & Operations

Framebuffer

OpenGL State
glBegin(GL_…), glColor, …

glLight, glRotate, …

glVertex()

Vertices in
Model Coord.

Vertices in
Camera Coord.

Connectivity

Primitives

Fragments

New Fragments

G. Zachmann 4 Advanced Shader Techniques Advanced Computer Graphics 10 May 2013 SS

More Versatile Texturing by Shader Programming

§  Declare texture in the shader (vertex or fragment):

§  Load und bind texture in OpenGL-program as always:

§  Establish a connection between the two:

§  Access in fragment shader:

uniform sampler2D myTex;

glBindTexture(GL_TEXTURE_2D, myTexture);

glTexImage2D(...);"

uint mytex = glGetUniformLocation(prog, "myTex");

glUniform1i(mytex, 0); // 0 = texture unit, not ID

vec4 c = texture2D(myTex, gl_TexCoord[0].xy);"

G. Zachmann 5 Advanced Shader Techniques Advanced Computer Graphics 10 May 2013 SS

Example: A Simple "Gloss" Texture

§  Idea: expand the conventional Phong lighting by introducing a
specular reflection coefficient that is mapped from a texture on the
surface

demos/shader/vorlesung_demos/gloss.{frag,vert}

l
v

n r

I
out

= (rd cos� + rs cos
p ⇥)·I

in

rs = rs(u, v)

G. Zachmann 6 Advanced Shader Techniques Advanced Computer Graphics 10 May 2013 SS

Procedural Textures Using Shader Programming

§  Goal:
Brick texture

§  Simplification &
parameters:

BrickStepSize.y

BrickStepSize.x

BrickPercent.y

BrickPercent.x

MortarColor BrickColor

G. Zachmann 7 Advanced Shader Techniques Advanced Computer Graphics 10 May 2013 SS

§  General mechanics:

§  Vertex shader: normal lighting calculation

§  Fragment shader:

-  For each fragment, determine if the point lies in the brick or in the mortar on the
basis of the x/y coordinates of the corresponding point in the object’s space

-  After that, multiply the corresponding color with intensity from lighting model

§  First 3 steps towards a complete shader program:

vorlesung_demos/brick.vert and brick[1-3].frag

G. Zachmann 8 Advanced Shader Techniques Advanced Computer Graphics 10 May 2013 SS

Noise

§  Most procedural textures look too "clean"

§  Idea: add all sorts of noise

§  Dirt, grime, random irregularities, etc., for a more realistic appearance

§  Ideal qualities of a noise function:

§  At least C2-continuous

§  It’s sufficient if it looks random

§  No obvious patterns or repetitions

§  Repeatable (same output with the same input)

§  Convenient domain, e.g. [-1,1]

§  Can be defined for 1-4 dimensions

§  Isotropic (invariant under rotation)

G. Zachmann 9 Advanced Shader Techniques Advanced Computer Graphics 10 May 2013 SS

§  Simple idea, demonstrated by a 1-dimensional example:

1. Choose random y-values from [-1,1] at the integer points:

2.  Interpolate in between, e.g. cubically (linearly isn’t sufficient):

§  This kind of noise function is called "value noise"

G. Zachmann 10 Advanced Shader Techniques Advanced Computer Graphics 10 May 2013 SS

3.  Generate multiple noise functions with different frequencies:

4.  Add all of these together

-  Produces noise at different "scales"

G. Zachmann 11 Advanced Shader Techniques Advanced Computer Graphics 10 May 2013 SS

§  The same thing in 2D:

§  Easily allows itself to be generalized
into higher dimensions

§  Also called Perlin noise, pink noise, or
fractal noise

§  Ken Perlin first dealt with this during his
work on TRON

Result

